
ME 7.x with Launch-Control & No-Lift-Shift

This "document" is written by someone with allmost zero knowledge in assembler and not very good
insight into the ME 7.x, or rather the infineon/siemens c167 cpu and its memory setup itself..
The document is composed from my own personal notes and english is not my native language..
so try to bear with me here..

My main source of information and inspiration has been the NefMoto
community, these guys are all about free information and helping
eachother out with anything and everything related to tuning =)

 Click the logo to visit this awesome community!

..anyway, this is what i came up with after a few days/nights of tinkering.. // Sn00k

Be WARNED! this function can SERIOUSLY damage your engine and exhaust components!

Be adviced! you need a coildriver of the later model to use this function, otherwise youll burn the
ignition coils, or if youre lucky, just a fuse.
(this seem to work perfectly on 1.8t models year 01 and up using the 1024kb flash, also on the
S4 M-box, i have yet to try it out on other cars.)

This manipulation is done in binary/hex form, and based on setzis v2 function posted in this thread:

http://nefariousmotorsports.com/forum/index.php?topic=607.msg5283#msg5283

Oh, be sure to grab his zip-file as it contains an xdf where conditions are explained.

This described is the "easy"/lazy way to implement the Launch-control & No-Lift-Shift functions into
me 7.x, it is VERY simplified, and leaves out alot of steps needed to write and compile
the actual function itself.. let alone modify it..

All credit goes to setzi62 for writing and compiling this function.. originally i think the idea for a
similar function, which also manipulates ignitioncoil dwelltime, came from Eurodyne(?).

To ensure this working 100% and not "bricking" the ecu, a full dissassembly of the image should be
done, and ALL adresses that will be used to store the new function and variables should be
crossreferenced to make sure them are free to use and dont interfere with the normal operations
of the ecu.

..if you skip this step, and yes you can do that, be sure to have access to bootmode flashing, as you
will really be doing some educated guessing from here on.. ;)

http://nefariousmotorsports.com/forum/index.php?topic=607.msg5283#msg5283
mumu
Cross-Out

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

http://www.nefmoto.com

1. Start this adventure by finding yourself a good HEX-editor, i personally like the "010-editor",
but there are many good ones out there.

Some friendly advice before we begin:
BE SURE YOU DONT INSERT VALUES AND MOVE THE CODE, MAKE SURE TO WRITE THEM
OVER. THIS ALSO GOES FOR PASTING CODE, MAKE SURE IT DONT MOVE THE CODE
AROUND, OR AFFECTS THE LENGTH OF THE FILE.

(in 010-editor you had to pre-mark the field in which u wanted to paste, else it moved
everything around, and this corrupts the file beyond rescue)

2. Download and use setzis me7logger tool, called "me7info" with these parameters:
 "me7info -n file.bin" to create an .ecu file containing specific adresses for your ecu, sorted
by adress, as you will need these later on.
(this .ecu file is placed in the "ecu" directory.)

the logger and tool can be found here:
http://nefariousmotorsports.com/forum/index.php?topic=837.msg7054#msg7054

3. Open your .bin file in the hex-editor.. and also an empty txt file, as you will be taking lots of
notes of adresses during this.

4. First find some empty space after the OEM code, where you are to put the new function.
search 0x75000h onwards for an empty line consisting of pure "FF" till you find a good even
number, like: 8E800 that setzi used.
The function currently occupies 9 rows of space.

see screenshot for an example:

write down the adress.

http://nefariousmotorsports.com/forum/index.php?topic=837.msg7054#msg7054

5. Next find some empty space where to put "condition"-variables, around 0x17E00 >
(search onwards for an empty line consisting of pure "FF", pref on a number like "00" to keep
things clean and easy to remember, setzi originally used: 17E00)

see screenshot:

write down the adress.

6. Take a look at setzis pseudo code, which i have attached to this document, to better get a
grip on how the function works:
setzi_v2_pseudo_code.txt

7. Fetch Setzis compiled function for the s4 M-box:
setzi_v2_compiled.txt

8. You will also need the function dissassembled to understand how it is built:
setzi_v2_dissassembled.txt

9. You will need to know all the M-box adresses to understand the code later on, these are
normally fetched in dissassembly, but ill supply them for reference here:

M-box_adresses.txt

10. Now you need to go into your created .ecu file with notepad or similar text-editor and fetch
your adresses.. you need the same items as in the "M-box_adresses.txt" file, be sure to get
them all, and be sure to write down the "Bitmask" after the values too, esp on "B_kuppl" and
"B_brems".

now the B_brems eluded me for a while, since it is placed inside a bit-registry along with
B_kuppl and some more variables, that said i found it located in the same adress as the
B_kuppl, but -2 in the bitmask.

that is if B_kuppl is located at 0x00FD56.8 (the last .8 beeing the bitmask), then B_brems
should be located at 0x00FD56.6

(i have verified this to be the case in 4 different bins).
thanks to Gremlin for pointing this out.

more info on bit-registrys, bitmasks and how to convert them from say 0x0040 into .6 in this
attached file:

Bit-registrys_bitmasks.txt

11. Locate emtpy RAM adress searching in your .ecu file, like 0x384FF0 that setzi originally used..
find unused adress preferably after the last used 0x384xxx adress.
(this is where you will place the NLS-counter later on)

See screenshot:

write down the adress.

12. Now you have all your adresses needed?

if yes, now comes the tricky part, entering these directly into the allready assembled code.
this took some tampering and tinkering to figure out, but it was not too hard after having
compiled a "few" rows by themselves in a compiler.(read: 48hour madness)
I also had alot of documentation for the c167 cpu, where i could look things up, especially
how it uses adresses in rom/ram and asm commands, not to mention good advice from
people here on the forum, getting me back on track after i was somewhat LOST, thanks guys!

Go HERE for detailed info on how to modify the function!

13. Now to locate the correct routine and call the new function:

in your hex editor, go to the end of file and search upwards for: "D7 40 06 02 03 F8" and you
should be in the right place.

See screenshot:

what you want to do code-wise is:

replace: "movb rl4, byte_xxxx"

with: "calls aah, 0Ebbbh ; aaEbbbh"

This is done by finding the "F3" value in this line(or the line above it)..
here is an example line:

"B7 8B F3 F8 9D 89 D7 40 06 02 03 F8 26 24 9D 02"

this F3 you will replace with "DA" (calls).
the next three fields will consist of your adress where you placed the new function.

now its getting tricky again since it is scrambled.. like this..

if i want it to call my new function located here: 8A9C00
(allways starts with 8 since in rom)

this becomes in the next 3 fields: 8A 00 9C

making the new line in my example look like this:

B7 8B DA 8A 00 9C D7 40 06 02 03 F8 26 24 9D 02

from how it originally looked, like this:

B7 8B F3 F8 9D 89 D7 40 06 02 03 F8 26 24 9D 02

BE SURE YOU DONT INSERT VALUES AND MOVE THE CODE, MAKE SURE TO WRITE THEM
OVER IN THE SAME LOCATION.

There, you have placed the call to your new function!

14. Allmost done! now we need to find your conditions value in the hex-editor, like setzi used
17E00 as an example, and insert this line to give it setzis standard example values:
(these can be changed later on in your XDF/ols)

"A6 01 50 46 0A 00 F0 55 E6 FF FF FF FF FF FF FF"

15. Make your xdf/winols references like this, using setzis 17E00 for example:
(enter your choosen adress for conditions instead)

SpeedThreshold: 0x17E00 size 2, 16bit LSB, conversion: X * 0.0078125 (km/h)
LaunchRPM: 0x17E02 size 2, 16bit LSB, conversion: X * 0.25 (rpm)
IgnitionCutDuration: 0x17E04 size 2, 16bit LSB, conversion: X * 20 (ms)
RPMThreshold: 0x17E06 size 2, 16bit LSB, conversion: X * 0.25 (rpm)
AccPedalThreshold: 0x17E08 size 1, 8bit LSB, conversion: X * 0.392157 (%)

FTOMN: find this adress in your damos/xdf, 8bit LSB, conversion: X / 10 (ms)

Take a look in setzis xdf for complete information on these conditions, or read the pseudo
code again, things should be pretty clear by now.

16. Now you should have everything you need, and be able to add this functionality to basically
any me7.x.

DONT FORGET to:

* change the FTOMN to "0" (0.00ms)
* set your conditions
* calculate your checksums.

Also be sure to let me know what you think of this write-up, as said, this was done with allmost no
previous knowledge.. but.. i found some patterns.. and, after some trial and error, in the end i
successfully compiled my own function for shooting fireballs out the ”auspuff”..! =D

http://nefariousmotorsports.com
mumu
Typewritten Text
Visit the NefMoto community:

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

mumu
Typewritten Text

9A 2B 13 80 F2 F4 40 8E D7 00 81 00 F2 F9 00 7E
40 49 9D 0B F2 F4 7A F8 D7 00 81 00 F2 F9 02 7E
40 49 FD 03 F7 8E AC 8D 0D 2F 9A 2B 29 80 8A 2B
22 60 F2 F4 7A F8 D7 00 81 00 F2 F9 06 7E 40 49
FD 1A C2 F4 02 8B D7 00 81 00 C2 F9 08 7E 40 49
FD 12 D7 00 38 00 F2 F4 F0 4F D7 00 81 00 F2 F9
04 7E 40 49 9D 11 F7 8E AC 8D 08 41 D7 00 38 00
F7 F8 F0 4F 0D 09 D7 00 38 00 F6 8F F0 4F 0D 04
D7 00 38 00 F6 8E F0 4F F3 F8 F3 8A DB 00 FF FF

ŀōƻǾŜ ƛǎ ǎŜǘȊƛǎ ŎƻƳǇƛƭŜŘ ŦǳƴŎǘƛƻƴΦ

Now THIS looks like a scrambled mess at first.. and it took me a
while to figure out the patterns, but, ill try to brake it down into
segments and explain as much as i can..
patching asm code is very hard.. and patching compiled code is..
even worse imo.. that said, here goes nothing! =D

9A 2B 13 80 F2 F4 40 8E D7 00 81 00 F2 F9 00 7E

Line 1, in this first row, we have in the end the 00 7E adress,
which really is the 17E00 location, that one is easy to identify and
modify.

now looking in the dissassembled function we find that there are two
adresses BEFORE this one.

(dont bother with the "loc_xxxxx" adresses in the dissassembled
function as the code is position independent.)

these are 8E40, which refers to your vfil_w located at 0x380E40..
now these 0x38xxxx adresses are remapped as 8000...BFFF, which
basically means your 380E40 now is beeing called 8E40.
see, this is the one in the dissassembled code, and it is located in
bit 6-7 in the binary, and also in reversed order, 7-6.

a 0x381E40 adress would be remapped as 9E40 (and written "40 9E")
since the adresses start at 8000.

now in this first line i ran into some trouble..
the 9A in the first bit seem to suggest this is a "jnb" instruction,
whereas if it had been an 8A, it suggest it beeing a "jb"..
this isn’t really important now, but we will run into this later on,
just thought id mention it.

now you see that 80 value in bit 3, the first half of that one is
the bitmask.. so if your bitmask is .8, enter 80 here.. if it is 12,
enter C0, and so on.
(look your bitmask up in the .ecu file and compare it to the table i
supplied on registrys and bitmasks)

the second bit is the tricky part, the 2B (we cannot touch the bit
holding 13 as this seem to be code), so we need to figure out how
this simple "2B" value becomes the adress FD56.

documentation of the memory structure states:

"The upper 256 Byte of the internal RAM (00’FD00h through 00’FDFFh)
and the GPRs of the current bank are provided for single bit
storage, and thus they are bit addressable."

so this means the value we really need to focus on is 56, and how
this 2B references it in the code.

these are EVEN bit values.. split them in 2, and the first and
second part can be grabbed in the table below:

F = 1E
E = 1C
D = 1A
C = 18
B = 16
A = 14
9 = 12
8 = 10
7 = E
6 = C
5 = A
4 = 8
3 = 6
2 = 4
1 = 2
0 = 0

if we are looking for say FD56, we would enter 2 for 4(or 40 since
it stands infront of another number),
and B for 16 here, making it "2B"(or 56)

whilst if we were looking for FD4E we would enter 27 here..
FD82 would be 41.. FD5E would be 2F and so on.

i think this has to do with memory beeing accessed only at EVEN
bits, but given the time is atm 04:30am atm and my brain-function =
nonexistent..
..ill try not to give it any more thought.. i dissassembled this
back and forth for about 2 hours and came up with this.. which is a
working pattern, good enough for me.

thats it, if youve read and somewhat understood the explanations
above, you should be able to enter your adresses accordingly into
the first row ABOVE ^^.

40 49 9D 0B F2 F4 7A F8 D7 00 81 00 F2 F9 02 7E

Line 2, in the end we find the "02 7E", which = 7E02 (17E02), which
is the next "conditions" value, easy to modify into your own value.
looking into the dissassembled function we can see a F87A adress
before this, and this is the nmot_w on adress 0x00F87A, its located
in bit 6-7 as "7A F8" which reversed is F87A and 0x00f87A..
very straightforward to alter. were done with row 2.

40 49 FD 03 F7 8E AC 8D 0D 2F 9A 2B 29 80 8A 2B

Line 3, first we have the tsrldyn located at bits 6-7, as "AC 8D",
which reversed is 8DAC as in 0x380DAC, switch this for your own.

remember those "jnb"(9A) and "jb"(8A)functions i mentioned we would
run into earlier, well here we have them.
you recognize the value after 9A? yes, that is the value you
calculated earlier, and the same B_kuppl,swap it for the same adress
as you did earlier.. and remember to also correct the bitmask like
earlier which is stored in that 80.
now wait, there is an 8A here.. followed by another 2B.. this is the
B_brems you are seeing, and as it is located in the same registry,
swap this adress to the same as B_kuppl, BUT remember to enter the
correct bitmask!(see Line 4)

22 60 F2 F4 7A F8 D7 00 81 00 F2 F9 06 7E 40 49

Line 4, if you have followed the dissassembled function, you se
that b_brems is located in the same registry as b_kuppl, but at
bitmask .6 and not .8 and so we begin with correcting the bitmask at
bit 1 which is 60, meaning .6 atm.
in the end of the row we see another of the 17E0x adresses.. the
17E06 in form of "06 7E", alter it to your correct adress.
looking in the dissassembled function again we can see that there is
an F87A before this, which was the nmot_w again at adress 0x00f87A,
located on bit 4-5 as "7A F8", which reversed is F87A.
swap it for your own nmot_w adress.
row 4 done.

FD 1A C2 F4 02 8B D7 00 81 00 C2 F9 08 7E 40 49

Line 5, in the end of it we have the 17E0x again, in form of "08
7E" which in reverse is 7E08, swap it for your own.
looking in the code again, we have only one more adress in this
line, called 8B02, which translates to 0x380B02, which would be the
wped, we find it at bit 4-5 in form of "02 8B" which reversed is
8B02, swap it for your own wped.
line 5 done.

FD 12 D7 00 38 00 F2 F4 F0 4F D7 00 81 00 F2 F9

Line 6, here we find the NLScounter, which setzi originally placed
at 0x384FF0 in the RAM, remember? you should allready have found a
free adress for this earlier looking into your .ecu file. so go
ahead and alter this one located at bit 8-9, in form of "F0 4F"
which in reverse becomes 4FF0.
There is a pointer to the RAM, 0x380000,in the code here so disregard
the NLScounter from the adress remapping, 0x384FF0 becomes 4FF0.
line 6 done.

04 7E 40 49 9D 11 F7 8E AC 8D 08 41 D7 00 38 00

Line 7, this one starts with a known 17E0x, in form of "04 7E" at
bit 0-1, which translates into 7E04 as in 17E04, swap it for your
own adress.
next adress in the dissassembly seems to be 8DAC as in tsrldyn
located at 0x380DAC, we find it at bit 8-9 as "AC 8D" which reversed
becomes 8DAC, swap it for your own tsrldyn adress.
line 7 done.

F7 F8 F0 4F 0D 09 D7 00 38 00 F6 8F F0 4F 0D 04

Line 8, we have the counter at bit 2-3, in form of "F0 4F" which
reversed is 4FF0 as in 0x384FF0, swap it for your counter adress.
it also appears in bit C-D, as "F0 4F", swap this one too.
line 8 done.

D7 00 38 00 F6 8E F0 4F F3 F8 F3 8A DB 00 FF FF

Line 9, the last line, and a bit special one too..
we find the counter again at bit 6-7 as "F0 4F", swap it for yours..
now the absolute last one we need to fetch from the location where
the new function is linked-in, this IS the original command
that we replaced when we made the calls to this new function.

Go make the link-in and get back to this, be sure to copy the
original row where you make the link-in, and save it in your
notebook.

in the M-box the routine where you make the "calls" look like this
originally:

8b3a0h: F0 49 F7 F8 AC 8D F3 F8 F3 8A D7 40 06 02 03 F8

the value we are looking for here are here named "F3 8A" which
reversed is 8AF3.. it is located in the two bits in front of the
"D7 40 06 02 03 F8" that you searched for earlier, BEFORE altering
this routine with your calls.
when making the call the adress will be overwriting the F3 8A part..
which is why you saved this line earlier, right? Right!

things are a bit confusing in the M-box since this one is actually
LOCATED at 8AF3 and that causes the F3 to appear two times in the
same row.. but this is the later one, which you would be writing
over with the adress in the mbox link-in:

8b3a0h: F0 49 F7 F8 AC 8D DA 8F 60 FA D7 40 06 02 03 F8

so onto line 9 again.. look at bit A-B, and pls look at the right
line, line 9, in the text way above us, there you will see "F3 8A",
this in reverse is the 8AF3 we were seeking, swap this for the
adress you overwrote when making the link-in to your function.
line 9 done.

copy paste all the modified lines together so them form a nice block
of 9 rows as per example:

9A 2B 13 80 F2 F4 40 8E D7 00 81 00 F2 F9 00 7E
40 49 9D 0B F2 F4 7A F8 D7 00 81 00 F2 F9 02 7E
40 49 FD 03 F7 8E AC 8D 0D 2F 9A 2B 29 80 8A 2B
22 60 F2 F4 7A F8 D7 00 81 00 F2 F9 06 7E 40 49
FD 1A C2 F4 02 8B D7 00 81 00 C2 F9 08 7E 40 49
FD 12 D7 00 38 00 F2 F4 F0 4F D7 00 81 00 F2 F9
04 7E 40 49 9D 11 F7 8E AC 8D 08 41 D7 00 38 00
F7 F8 F0 4F 0D 09 D7 00 38 00 F6 8F F0 4F 0D 04
D7 00 38 00 F6 8E F0 4F F3 F8 F3 8A DB 00 FF FF

Your new function has now been created!

paste it in your location, making sure NOT to move any of the other
code, or the end of file.. how to do this depends on which hex
editor you are using, but im sure youll figure it out.

Go back!

How do I read individual bits in a register?

The bit mask shown in the expanded form of the RTU read map is a 4 digit hexadecimal (16 bit) value
used to mask out one or more bits in a register. The selected bits will be right justified,
so a single bit regardless of where positioned in the source register will be stored locally
as 0 or 1. The notation of register number followed by a colon and number from 0 to 15 indicates
a single bit picked from that register. The hex bit mask values would be as follows, assuming a
register number of 40001.

40001.0 mask: 0001
40001.1 mask: 0002
40001.2 mask: 0004
40001.3 mask: 0008
40001.4 mask: 0010
40001.5 mask: 0020
40001.6 mask: 0040
40001.7 mask: 0080
40001.8 mask: 0100
40001.9 mask: 0200
40001.10 mask: 0400
40001.11 mask: 0800
40001.12 mask: 1000
40001.13 mask: 2000
40001.14 mask: 4000
40001.15 mask: 8000

Sometimes a 16-bit register is used to hold two 8-bit values. To strip bytes using the bit mask,
you would enter the following:

Low byte mask: 00FF
High byte mask: FF00

tsrldyn:	0x380DAC
B_kuppl: 	0x00FD56.8	(0x00FD56 bitmask 0x0100)
vfil_w: 	0x380E40
nmot_w:		0x00F87A
wped:		0x380B02
B_brems:	0x00FD56.6 	(0x00FD56 bitmask 0x0040)

FTOMN:		0x1A340		(only used to set MIN coil dwelltime to "0", which makes it 0.00ms = cut spark.)

(also these from setzis xdf are needed to understand/alter the compiled code)

SpeedThreshold:		0x17E00 size 2, 16bit LSB
LaunchRPM: 		0x17E02 size 2, 16bit LSB
IgnitionCutDuration:	0x17E04 size 2, 16bit LSB
RPMThreshold: 		0x17E06 size 2, 16bit LSB
AccPedalThreshold: 	0x17E08 size 1, 8bit LSB

counter_NoLiftShift: 	0x384FF0

setzis function: 	0x8E800

Link-in at adress: 0x8B3A0

9A 2B 13 80 F2 F4 40 8E D7 00 81 00 F2 F9 00 7E
40 49 9D 0B F2 F4 7A F8 D7 00 81 00 F2 F9 02 7E
40 49 FD 03 F7 8E AC 8D 0D 2F 9A 2B 29 80 8A 2B
22 60 F2 F4 7A F8 D7 00 81 00 F2 F9 06 7E 40 49
FD 1A C2 F4 02 8B D7 00 81 00 C2 F9 08 7E 40 49
FD 12 D7 00 38 00 F2 F4 F0 4F D7 00 81 00 F2 F9
04 7E 40 49 9D 11 F7 8E AC 8D 08 41 D7 00 38 00
F7 F8 F0 4F 0D 09 D7 00 38 00 F6 8F F0 4F 0D 04
D7 00 38 00 F6 8E F0 4F F3 F8 F3 8A DB 00 FF FF

		seg018:E800 ; ---

		seg018:E800 jnb word_FD56.8		 loc_8E82A

		seg018:E804 mov r4		 word_8E40

		seg018:E808 exts #81h		 #1 ; 'ü'

		seg018:E80C mov r9		 7E00h ; 817E00h

		seg018:E810 cmp r4		 r9

		seg018:E812 jmpr cc_NC		 loc_8E82A

		seg018:E814 mov r4		 word_F87A

		seg018:E818 exts #81h		 #1 ; 'ü'

		seg018:E81C mov r9		 7E02h ; 817E02h

		seg018:E820 cmp r4		 r9

		seg018:E822 jmpr cc_ULE		 loc_8E82A

		seg018:E824 movb byte_8DAC		 ZEROS

		seg018:E828 jmpr cc_UC		 loc_8E888

		seg018:E82A ; ---

		seg018:E82A

		seg018:E82A loc_8E82A: ; CODE XREF: seg018:E800�j

		seg018:E82A ; seg018:E812�j ...

		seg018:E82A jnb word_FD56.8		 loc_8E880

		seg018:E82E jb word_FD56.6		 loc_8E876

		seg018:E832 mov r4		 word_F87A

		seg018:E836 exts #81h		 #1 ; 'ü'

		seg018:E83A mov r9		 7E06h ; 817E06h

		seg018:E83E cmp r4		 r9

		seg018:E840 jmpr cc_ULE		 loc_8E876

		seg018:E842 movbz r4		 byte_8B02

		seg018:E846 exts #81h		 #1 ; 'ü'

		seg018:E84A movbz r9		 7E08h ; 817E08h

		seg018:E84E cmp r4		 r9

		seg018:E850 jmpr cc_ULE		 loc_8E876

		seg018:E852 exts #38h		 #1 ; '8'

		seg018:E856 mov r4		 4FF0h ; 384FF0h

		seg018:E85A exts #81h		 #1 ; 'ü'

		seg018:E85E mov r9		 7E04h ; 817E04h

		seg018:E862 cmp r4		 r9

		seg018:E864 jmpr cc_NC		 loc_8E888

		seg018:E866 movb byte_8DAC		 ZEROS

		seg018:E86A add r4		 #1

		seg018:E86C exts #38h		 #1 ; '8'

		seg018:E870 movb 4FF0h		 rl4 ; 384FF0h

		seg018:E874 jmpr cc_UC		 loc_8E888

		seg018:E876 ; ---

		seg018:E876

		seg018:E876 loc_8E876: ; CODE XREF: seg018:E82E�j

		seg018:E876 ; seg018:E840�j ...

		seg018:E876 exts #38h		 #1 ; '8'

		seg018:E87A mov 4FF0h		 ONES ; 384FF0h

		seg018:E87E jmpr cc_UC		 loc_8E888

		seg018:E880 ; ---

		seg018:E880

		seg018:E880 loc_8E880: ; CODE XREF: seg018:loc_8E82A�j

		seg018:E880 exts #38h		 #1 ; '8'

		seg018:E884 mov 4FF0h		 ZEROS ; 384FF0h

		seg018:E888

		seg018:E888 loc_8E888: ; CODE XREF: seg018:E828�j

		seg018:E888 ; seg018:E864�j ...

		seg018:E888 movb rl4		 byte_8AF3

		seg018:E88C rets

		seg018:E88C ; --

function_antilag_noliftshift()
{
 // Anti-Lag
 if (B_kuppl && vfil_w < SpeedThreshold && nmot_w > LaunchRPM)
 {
 tsrldyn = 0; // Interrupt ignition
 return;
 }

 // No-Lift-Shift
 if (B_kuppl)
 {
 if (! B_brems && nmot_w > RPMThreshold && wped > AccPedalThreshold)
 {
 // NoLiftShift is active
 if (counter_NoLiftShift < IgnitionCutDuration)
 {
 tsrldyn = 0; // Interrupt ignition
 counter_NoLiftShift++;
 }
 }
 else
 {
 // Other conditions not true, don't allow ignition interruption
 // until clutch is released and pressed again
 counter_NoLiftShift = 0xFFFF;
 }
 }
 else
 {
 // Clutch released -> re-arm NLS
 counter_NoLiftShift = 0;
 }
}

